Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury
نویسندگان
چکیده
In this study, we hypothesized that non-invasive continuous wave near-infrared spectroscopy (CWNIRS) can determine the severity or reversibility of muscle damage due to ischemia/reperfusion (I/R), and the results will be highly correlated with those from physical examination and histological analysis. To test this hypothesis, we performed CWNIRS measurements on two groups of male Sprague-Dawley rats (∼400 g) that underwent 2 h (n = 6) or 3 h (n = 7) of pneumatic tourniquet application (TKA). Tissue oxyhemoglobin [HbO2] and deoxyhemoglobin [Hb] concentration changes were monitored during the 2 h or 3 h of 250 mmHg TKA and for an additional 2 h post-TKA. Rats were euthanized 24 h post-TKA and examined for injury, edema and viability of muscles. Contralateral muscles served as controls for each animal. In both groups, [HbO2] dropped immediately, then gradually decreased further after TKA and then recovered once the tourniquet was released. However, releasing after 2 h of TKA caused [HbO2] to overshoot above the baseline during reperfusion while the 3 h group continued to have lower [HbO2] than baseline. We found a significant correlation between the elapsed time from tourniquet release to the first recovery peak of [HbO2] and the muscle weight ratio between tourniquet and contralateral limb muscles (R = 0.86). Hemodynamic patterns from non-invasive CWNIRS demonstrated significant differences between 2 h and 3 h I/R. The results demonstrate that CWNIRS may be useful as a 0967-3334/09/070529+12$30.00 © 2009 Institute of Physics and Engineering in Medicine Printed in the UK 529
منابع مشابه
Hemodynamic changes in rat leg muscles during tourniquet-induced ischemia-reperfusion injury observed by near-infrared spectroscopy.
In this study, we hypothesized that non-invasive continuous wave near-infrared spectroscopy (CWNIRS) can determine the severity or reversibility of muscle damage due to ischemia/reperfusion (I/R), and the results will be highly correlated with those from physical examination and histological analysis. To test this hypothesis, we performed CWNIRS measurements on two groups of male Sprague-Dawley...
متن کاملTourniquet induced ischemia and changes in metabolism during TKA: a randomized study using microdialysis
BACKGROUND Tourniquet use in total knee arthroplasty (TKA) surgery is applied to minimize blood loss thereby creating better overview of the surgical field. This induces ischemia in the skeletal muscle resulting in reperfusion injury. Our aim was to investigate the in vivo metabolic changes in the skeletal muscle during TKA surgery using microdialysis (MD). METHODS Seventy patients were rando...
متن کاملEffects of Postconditioning, Preconditioning and Perfusion of L-carnitine During Whole Period of Ischemia/ Reperfusion on Cardiac Hemodynamic Functions and Myocardial Infarction Size in Isolated Rat Heart
متن کامل
بررسی اثرات همودینامیک و تنفسی آماد هسازی ایسکمیک دور در بیماران تحت جراحی شکستگی اندام تحتانی
Aim and Background: Arterial tourniquets are used widely for extremity orthopedic surgeries with regional or general anesthesia to reduce blood loss, but the harmful effect of ischemia and reperfusion is not clear yet. Materials and Methods: In this clinical trial 40 patients scheduled for lower extremity surgery with pneumatic tourniquet were randomized into 2 groups: a remote ischemi...
متن کاملEffect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat
Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009